The mechanism of UNC-51-like kinase 1 and the applications of small molecule modulators in cancer treatment.

Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China. Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China; Institute of Structural Pharmacology & TCM Chemical Biology, Fujian Key Laboratory of Chinese Materia Medica, College of Pharmacy, Fujian University of Traditional Chinese Medicine, Fuzhou, 350122, China. Electronic address: 2022041@fjtcm.edu.cn. Chinese People's Liberation Army Logistics Support Force, No. 967 Hospital, Dalian, 116021, China. Electronic address: wxbbenson0653@sina.com. Wuya College of Innovation, Key Laboratory of Structure-Based Drug Design & Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China. Electronic address: syzyclx@163.com.

European journal of medicinal chemistry. 2024;:116273
Full text from:

Abstract

Autophagy is a process of self-renewal in cells, which not only provides the necessary nutrients for cells, but also clears necrotic organelles. Autophagy disorders are closely related to diseases such as cancer. UNC-51-like kinase 1 (ULK1) is a serine/threonine protein kinase that plays a crucial role in receiving input from energy and nutrient sensors, activating autophagy to maintain cellular homeostasis under stressful conditions. In recent years, targeting ULK1 has become a highly promising strategy for cancer treatment. This review introduces the regulatory mechanism of ULK1 in autophagy through the AMPK/mTOR/ULK1 pathway and reviews the research progress of ULK1 activators and inhibitors and their applications in cancer treatment. In addition, we analyze the binding modes between ULK1 and modulators through virtual molecular docking, which will provide a reliable basis and theoretical guidance for the design and development of new therapeutic drugs targeting ULK1.

Methodological quality

Publication Type : Review

Metadata